
Cube Testers and Key Recovery in
Symmetric Cryptography

Willi Meier

1 / 69

Contents

I Describe a new type of algebraic cryptanalysis
I Not based on explicit algebraic description (Black Box

Analysis)
I New applications to symmetric crypto systems of

inherently low algebraic degree
I Joint work with J.P. Aumasson, I. Dinur, S. Fischer, L.

Henzen, S. Khazaei and A. Shamir

2 / 69

Symmetric Crypto Systems

3 / 69

A few Notions

A classical crypto system consists of a parametrized family of
transformations.

Let X denote the set of plaintexts, Y the set of ciphertexts.
Then encryption is a transformation

Ez : X 7−→ Y

with z as a parameter, where z ∈ Z , the set of secret keys.

Decryption is the inverse transformation

Dz : Y 7−→ X .

4 / 69

Encryption transformation assumed to be known. Security rests
solely on the secrecy of the key.

Several attack scenarios:
I Ciphertext-only: Opponent O knows a number of

ciphertexts.
I Known plaintext: O knows pairs (x , y) of plaintexts x and

corresponding ciphertexts y .
I Chosen plaintext: O has access to encryption machinery.

He can choose plaintexts x and gets ciphertexts y .

5 / 69

Goal of opponent: To determine the secret key.

Condition for design of E : Solving for z in Ez(x) = y for given
(x , y) should be a mathematically complex problem.

Well known symmetric crypto systems:

I Block ciphers, e.g., DES, AES
I Stream Ciphers
I Message authentication codes
I Hash functions (have no key)

6 / 69

Stream Ciphers

A (deterministic) stream cipher is a map

S : {0, 1}n × {0, 1}m 7→ {0, 1}`

where the input is a pair (k , v), (k : secret key, v : a public initial
vector) and that produces a (long) binary string, the keystream.

As in every symmetric crypto system, sender and receiver have
to be in possession of the key k (e.g. of 128 bits).

Encryption: Plaintext string x is bitwise added mod 2 to the
keystream to get ciphertext string y .

Decryption: Ciphertext string y is bitwise added mod 2 to the
keystream to get plaintext x .

7 / 69

Prototype: One-Time-Pad

Keystream: A random binary string

OTP has perfect security.

In a deterministic stream cipher, random string replaced by
pseudo random string.

Provable security lost.

8 / 69

Examples of stream ciphers

I RC4, used, e.g., in eBanking
I E0, used in the Bluetooth protocol
I A5/1, used in GSM cellphones

State-of-the-art stream ciphers include Salsa20, Rabbit for
software, and Grain and Trivium for hardware.

9 / 69

Hash functions

Hash functions are essential building blocks for digital
signatures.

A hash function h is a map

{0, 1}? 7→ {0, 1}n

of bit strings of arbitrary length to bit strings of length n. Hash
functions are often iteratively constructed using compression
functions. A compression function is a map

h : {0, 1}m 7→ {0, 1}n,

where m > n.

A collision of h is a pair of strings (x , x ′), x 6= x ′, for which
h(x) = h(x ′).

10 / 69

A hash function is collision resistant, if it is ”infeasible” to find a
collision (although, mathematically, collisions are abundant).

For any hash function, collision finding based on the birthday
paradox can be applied:

Complexity ≈ 2n/2.

A hash function is ”broken”, if collisions faster than by birthday
paradox can be found.

Likewise, a hash function is broken, if a preimage of h faster
than with complexity 2n can be found.

Well known hash functions are MD5 and SHA-1. Both are
broken. For MD5, collisions have been found efficiently (Wang,
2005).

11 / 69

Cube attacks

12 / 69

Background

Solving large systems of multivariate polynomial equations over
GF (2) is known to be difficult:

Problem is NP-complete even if all equations are of degree only
2.

Best known method for solving this problem: Gröbner bases.

Method becomes inefficient for large number of unknowns,
unless system is nonrandom.

Computational complexity hard to assess.

13 / 69

If number of equations is much larger than number of
unknowns: Linearisation

For each monomial, a new variable is introduced and system
solved by Gaussian elimination.

Observation: Many functions in cryptography come with a
secret and a public parameter and are variants derived from a
single polynomial.

14 / 69

Problem formalization

Consider a Boolean function

f : {0, 1}n+m 7−→ {0, 1},

f : (k , v) 7→ z,

where k denotes a secret key, and v a public variable.

k = (k1, k2, ..., kn) and v = (v1, v2, ..., vm): Binary vectors of
dimensions n and m.

Threat model: An adversary sends a public variable v of his
choice to the oracle, and gets back the value (i.e., the output) z,
according to a fixed unknown key k chosen by the oracle.

Goal: Determine the key efficiently (i.e., with computational
complexity lower than exhaustive search over all 2n values of
k).

15 / 69

Cube attacks: the idea

Requirements of the attacker:

I only black-box access to the function
I negligible memory

Cube attacks work in 2 phases

I precomputation: chosen keys and chosen IVs
I online: fixed unknown key and chosen IVs

16 / 69

Observation 1

Computation of coefficient of monomial of largest
degree

f (x1, x2, x3, x4) = x1 + x3 + x1x2x3 + x1x2x4

= x1 + x3 + x1x2x3 + x1x2x4 + 0× x1x2x3x4

Sum over all values of (x1, x2, x3, x4):

f (0, 0, 0, 0)+f (0, 0, 0, 1)+f (0, 0, 1, 0)+· · ·+f (1, 1, 1, 1) = 0

17 / 69

Observation 2

Evaluation of factor polynomials

f (x1, x2, x3, x4) = x1 + x3 + x1x2x3 + x1x2x4

= x1 + x3 + x1x2(x3 + x4)

Fix x3 and x4, sum over all values of (x1, x2):∑
(x1,x2)∈{0,1}2

f (x1, x2, x3, x4) = 4× x1 + 4× x3 + 1× (x3 + x4)

= x3 + x4

18 / 69

Observation 2

Evaluation of factor polynomials

f (x1, x2, x3, x4) = · · ·+ x1x2(x3 + x4)

Fix x3 and x4, sum over all values of (x1, x2):∑
(x1,x2)∈{0,1}2

f (x1, x2, x3, x4) = x3 + x4

19 / 69

Terminology

f (x1, x2, x3, x4) = x1 + x3 + x1x2(x3 + x4)

(x3 + x4) is called the superpoly of the cube x1x2

20 / 69

Evaluation of a superpoly

x3 and x4 fixed and unknown

f (·, ·, x3, x4) queried as a black box

ANF unknown, except: x1x2’s superpoly is (x3 + x4)

f (x1, x2, x3, x4) = · · ·+ x1x2(x3 + x4) + · · ·

Query f to evaluate the superpoly:∑
(x1,x2)∈{0,1}2

f (x1, x2, x3, x4) = x3 + x4

21 / 69

Key-recovery attack

On a cryptosystem with key k and public parameter v

f : (k , v) 7→ first keystream bit

Offline: find cubes with linear superpolys

f (k , v) = · · ·+ v1v3v5v7(k2 + k3 + k5) + · · ·
f (k , v) = · · ·+ v1v2v6v8v12(k1 + k2) + · · ·
· · · = · · ·

f (k , v) = · · ·+ v3v4v5v6(k3 + k4 + k5) + · · ·

(reconstruct the superpolys with linearity tests)

Online: evaluate the superpolys, solve the system

22 / 69

Cube attacks (more formally)

Ignore distinction between secret and public variables.

Variables x1, ..., xn.

p(x1, ..., xn) a multivariate polynomial of total degree d .

As x2
i = xi mod 2, monomials tI in ANF of p can be identified

with subset I ⊆ {1, ..., n} of the variables xi , i ∈ I, that are
multiplied.

Given a polynomial p and a index subset I, can factor common
monomial tI out of some of the monomials in p:

Represent p as sum of monomials which are supersets of I,
and monomials which are not supersets of I:

23 / 69

Superpoly

p(x1, ..., xn) ≡ tI · pS(I) + q(x1, ..., xn).

pS(I): superpoly of I in p.

For any p and I, pS(I) is polynomial that does not contain a
common variable with tI , and each monomial in q(x1, ..., xn)
misses at least one variable from I.

A maxterm of p is a monomial tI such that the degree of the
superpoly pS(I) is 1, (i.e., linear, and not a constant).

24 / 69

Cubes

A subset I of size k defines k -dimensional binary cube of 2k

vectors CI :

Assign all possible combinations of 0/1 values to variables in I.
Leave all other variables undetermined.

Any vector v ∈ CI defines new derived polynomial p|v with
n − k variables.

Sum these derived polynomials over all 2k vectors in CI : New
polynomial, denoted by

pI =
∑
v∈CI

p|v .

25 / 69

Determining the superpoly

For any polynomial p and subset I of variables I, pI ≡ pS(I) mod
2.

Proof: Write p(x1, ..., xn) = tI · pS(I) + q(x1, ..., xn).
First case: Consider an arbitrary monomial tJ of q(x1, ..., xn)
(i.e., J is the subset containing the variable indexes that are
multiplied in tJ).
tJ misses at least one of the variables in I. Hence it is added an
even number of times: For the two values 0/1 of any of the
missed variables, whereas all other values of the variables are
the same. Thus it cancels mod 2 in

∑
v∈CI

p|v .

26 / 69

Proof (contd.)

Second case: Consider polynomial tI · pS(I).
For all v ∈ CI the monomial tI takes value 0, except for
v = (1, .., 1).
As the polynomial pS(I) has no variables with indexes in I, it is
independent of the values that are summed over.
Hence pS(I) is summed only once, when tI has value 1.

27 / 69

A consequence

Result states that the sum of the 2k polynomials derived from
the polynomial p by assigning all values to the k variables in I,
eliminates all monomials, except those which are contained in
the superpoly of I in p.

Summation reduces the total degree of p by at least k .

If tI is any maxterm in p, this sum yields a linear equation in
remaining variables.

In this procedure, only 0/1 values are added, not (huge)
symbolic expressions.

28 / 69

Preprocessing Phase

Given an explicit description of polynomial p, splitting p into
p(x1, ..., xn) = tI · pS(I) + q(x1, ..., xn) is feasible for any
monomial tI .

In Cryptography, no mathematical description of polynomial p is
assumed. Instead, p is given as a black box polynomial:

p : (k , v) 7−→ z = p(k , v)

Access of function values z for chosen public vector
v = (v1, ..., vm), and fixed unknown secret vector
k = (k1, ..., kn).

Assume total degree of p is known to be d .

29 / 69

Question: How to find pS(I) for given maxterm tI , if p given as
black box polynomial?

Solution: Use a separate preprocessing phase, in which both,
public and secret variables are accessible.

Variables of superpoly pS(I) are secret, variables in set I are
public.

30 / 69

Find linear superpoly

Let tI be a maxterm in a black box polynomial p. Then:
1. Compute the constant in pS(I) by summing mod 2 the

values of p over all inputs of the n + m variables which are
0 everywhere, except on the d − 1 variables in the
summation cube CI .

2. Compute coefficient of kj in linear expression pS(I) by
summing mod 2 all values of p for input vectors which are
0 everywhere except on the summation cube CI and all the
values of p for input vectors which are 0 everywhere
except on the summation cube and at kj which ist set to 1.

31 / 69

Proof: In a linear expression, the coefficient of any variable kj
is 1 if and only if flipping the value of kj flips the value of the
expression. The constant is computed by setting all the
variables to 0.

32 / 69

Cube attack: Complexity

Need about n linear equations to determine n unknowns kj ,
j = 1, ..., n.

Assume black box polynomial has total degree d .

Generating each linear equation (linear superpoly) requires
2d−1n computations.

If matrix determined by n equations is nonsingular, compute its
inverse once. (Probability that matrix nonsingular: ≈ 0.3.)

Preprocessing complexity: 2d−1n2 + n3

Online complexity: 2d−1n + n2.

33 / 69

An application

In practice, total degree d of black box polynomial unknown in
advance, and polynomials often nonrandom.

Need linearity test to check whether superpoly is indeed linear
(e.g., Blum-Luby-Rubinfeld test).

Stream cipher Trivium (reduced to 771 rounds):

Recover 80-bit key in ≈ 236

Trivium is eSTREAM finalist, designed by De Cannière and
Preneel in 2005.

34 / 69

Trivium

I 80-bit key and initial value IV (public)
I 3 quadratic NFSRs, of different lenghts
I 1152 initialization rounds before output is produced
I best practical attack on 771 rounds (cube attack)

35 / 69

Trivium (description)

Recall that a stream cipher is as a map

S : {0, 1}n × {0, 1}m 7→ {0, 1}`

In practice, this map is effected in two phases, and uses the
mechanism of a state (of size at least m + n, due to
time-memory-data tradeoffs):

I Initialization of a state
I Generation of output by state update and output function

36 / 69

In Trivium, m = n = 80.

State size is 288 bit.

Update function nonlinear, to counter algebraic attacks.

Output function is linear.

At each update, one output bit is produced.

37 / 69

Initialization of Trivium

(s1, s2, ..., s93)← (k1, ..., k80, 0, 0, ..,)
(s94, s95, ..., s177)← (v1, v2, ..., v80, 0., , , , 0)
(s178, s179, ..., s288)← (0, 0, ..., 0, 1, 1, 1)
for i = 1 to 4 · 288 do

t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s264

t3 ← t3 + s286 · s287 + s69

(s1, s2, ..., s93)← (t3, s1, ..., s92)

(s94, s95, ..., s177)← (t1, s94, ..., s176)

(s178, ..., s288)← (t2, s178, ..., s287)

end for

38 / 69

Output generation of Trivium

for i = 1 to ` do
t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

zi ← t1 + t2 + t3
t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s264

t3 ← t3 + s286 · s287 + s69

(s1, s2, ..., s93)← (t3, s1, ..., s92)

(s94, s95, ..., s177)← (t1, s94, ..., s176)

(s178, ..., s288)← (t2, s178, ..., s287)

end for

39 / 69

Remarks

If in iterations, state variables s1, ..., s288 are expressed by
k1, ..., k80 and v1, ..., v80, degree of polynomials increases only
slowly.

System of equations in state variables for given output
sequence z1, ..., z` is of low degree for ` = 288, and has only
few nonlinear monomials.

Best attack on full Trivium for given output sequence by
Maximov-Biryukov.

Involves guessing of certain state bits and products of state bits
that reduce nonlinear system of equations to linear one.

Complexity: c · 284 for some constant c.

40 / 69

Cube testers

41 / 69

Cube testers in brief

Like cube attacks:

I need only black-box access
I target primitives with secret and public variables and
I built on low-degree components

Unlike cube attacks:

I give distinguishers rather than key-recovery
I don’t require low-degree functions
I need no precomputation

42 / 69

Basic idea

Detect structure (nonrandomness) in the superpoly,

using algebraic property testers

A tester for property P on the function f :

I makes (adaptive) queries to f
I accepts when f satisfies P
I rejects with bounded probability otherwise

43 / 69

Examples of efficiently testable properties

I balance
I linearity
I low-degree
I constantness
I presence of linear variables
I presence of neutral variables

General characterization by Kaufman/Sudan, STOC’ 08

44 / 69

Superpolys attackable by testing...

. . . low-degree (6)

· · ·+ x1x2x3(x5x6 + x7x21 + x6x9x20x30x40x50) + · · ·

. . . neutral variables (x6)

· · ·+ x1x2x3x4x5 · g(x7, x8, . . . , x80) + · · ·

. . . linear variables (x6)

· · ·+ x1x2x3x4x5 · (x6 + g(x7, x8, . . . , x80)) + · · ·

45 / 69

Results

46 / 69

MD6

Presented by Rivest at CRYPTO 2008

Submitted to the SHA-3 competition

I quadtree structure
I construction RO-indifferentiable
I low-degree compression function
I at least 80 rounds
I best attack by the designers: 12 rounds

47 / 69

Compression function of MD6

{0, 1}64×89 7→ {0, 1}64×16

Input: 64-bit words A0.A1, . . . , A88

Compute the Ai ’s with the recursion

x ← Si ⊕Ai−17⊕Ai−89⊕ (Ai−18∧Ai−21)⊕ (Ai−31∧Ai−67)

x ← x ⊕ (x � ri)

Ai ← x ⊕ (x � `i)

I round-dependent constant Si

I quadratic step, at least 1280 steps

48 / 69

Results on MD6

Cube attack (key recovery)

I on the 14-round compression function
I recover any 128-bit key
I in time ≈ 222

Cube testers (testing balance)

I detect nonrandomness on 18 rounds
I detect nonrandomness on 66 rounds when Si = 0
I in time ≈ 217, 224, resp.

49 / 69

Cube testers on Trivium

Test the presence of neutral variables

Distinguishers (only choose IVs)

I 224: 772 rounds
I 230: 790 rounds

Nonrandomness (assumes some control of the key)

I 224: 842 rounds
I 227: 885 rounds

Full version: 1152 rounds

50 / 69

Grain-128

State-of-the-art stream cipher developed within

’s eSTREAM Project (04-08)

I designed by Hell, Johansson, Maximov, Meier (2007)
I 128-bit version of the eSTREAM cowinner Grain-v1 (2005)
I 128-bit key, 96-bit IV, 256-bit state
I previous DPA and related-key attacks
I standard-model attack on round-reduced version (192/256)

51 / 69

Grain-128

NFSR LFSR

h

g f

i
?

?- �

- �

- -

?i� � �

7 2 7 1

19 1 6 1

deg f = 1, deg g = 2, deg h = 3

Initalization: key in NFSR, IV in LFSR, clock 256 times

Then 1 keystream bit per clock
52 / 69

Cube testers (simple version)

Key

IV

f ()

..

.

0
1
1..

.

1. pick a random key and fix (96− n) IV bits
2. vary n IV bits to obtain the evaluation of order-n derivative⊕

(x0,...,xn−1)∈{0,1}n

f (x) =
∂nf

∂x0 . . . ∂xn−1

for well-chosen cube (=variables), statistical bias detectable

ex: f of degree n⇒ constant derivative

53 / 69

How to determine variable bits?

Complexity bottleneck, and main distinction with previous
high-order differential attacks

Analytically: find “weak” variables by analyzing the algorithm

Ex: Trivium

Empirically: explore the search space to find good sets of
variables with discrete optimization tools

54 / 69

Going against the Grain

Method:

1. select n variable IV bits
2. set the remaining IV bits to zero
3. set the key bits randomly
4. run Grain-128 for all the 2n values and collect results
5. repeat steps 3-4 N times and make statistics

we try to detect for imbalance in the distribution of the results
e.g., if derivatives look like x0x1x2 + x1x2x3x4x5

Problem 1: finding good cubes/variables (SW: C code + gcc
*.c)
Problem 2: implementing the attack (HW: VHDL + FPGA)

55 / 69

Going against the Grain

Method:

1. select n variable IV bits
2. set the remaining IV bits to zero
3. set the key bits randomly
4. run Grain-128 for all the 2n values and collect results
5. repeat steps 3-4 N times and make statistics

we try to detect for imbalance in the distribution of the results
e.g., if derivatives look like x0x1x2 + x1x2x3x4x5

Problem 1: finding good cubes/variables (SW: C code + gcc
*.c)

Problem 2: implementing the attack (HW: VHDL + FPGA)

55 / 69

Going against the Grain

Method:

1. select n variable IV bits
2. set the remaining IV bits to zero
3. set the key bits randomly
4. run Grain-128 for all the 2n values and collect results
5. repeat steps 3-4 N times and make statistics

we try to detect for imbalance in the distribution of the results
e.g., if derivatives look like x0x1x2 + x1x2x3x4x5

Problem 1: finding good cubes/variables (SW: C code + gcc
*.c)
Problem 2: implementing the attack (HW: VHDL + FPGA)

55 / 69

Software precomputation

Bitsliced implementation

I 64 instances in parallel with different keys and IVs
I tester using order-30 derivatives in ≈ 45min

Evolutionary algorithm
I generic discrete optimization tool
I search variables that maximize the number of rounds

attackable
I huge search space, e.g.

(96
32

)
≥ 284

I quickly converges into local optima

Cube dimension 6 10 14 18 22 26 30 . . . ?
Rounds 180 195 203 208 215 222 227 . . . 256

For larger cubes we shall need more computational power
56 / 69

Search for good cubes

Evolutionary algorithm: generic discrete optimization tool

In a nutshell: population = subset of variables

1. initialize population pseudorandomly
2. reproduction (crossover + mutation)
3. selection of best fitting individuals
4. go to 2.

#generations (steps 2-4) before halting = parameter

57 / 69

Grain-128 in FPGA

I 32× parallelization (32 cipher clocks/system clock)
I on Xilinx Virtex-5 LX330: 180 slices for 1 instance at

200 MHz
I 256 instances: 46080 slices, of available 51 840 slices

available

NFSR LFSR

32-63

0-31

96-127

64-95

Output

g’ h’ f

32-63

0-31

96-127

64-95

k0,...,31

k32,...,63

k64,...,95

k95,...,127

IV0,...,31

IV32,...,63

IV64,...,95

1,1,...,1

58 / 69

Cube testers in FPGA

I exploit (almost) all the slices available
I 256 Grain-128 modules work on distinct IVs
I additional units to generate inputs and to store results

I simulation controller
I input generator
I output collector

I evaluation of cubes for 32 consecutive rounds
I LSFR to generate keys efficiently

59 / 69

FPGA parallel cube tester core

Grain_1 Grain_2 Grain_3 Grain_2m

s_inst

Output collection
u_inst

96 96 96 96

32 32 32 32

Out2m
−1Out0 Out1 Out2

IV2m
−1IV0

eq=
\LARGE
\[
 \textnormal{IV}_0
\]

IV1

eq=
\LARGE
\[
 \textnormal{IV}_1
\]

IV2

eq=
\LARGE
\[
 \textnormal{IV}_2
\]

e_inst

Key and IV generationLFSR incrementer

partial IV n-m128

CV
router

CV
router

CV
router

CV
router

m m m m

offset2m
−1offset0 offset1 offset2

Si
m

ul
at

io
n

co
nt

ro
lle

r

AR
RA

Y

Key

60 / 69

Performance and results

I evaluation of (n + 8)-dimensional cubes as fast as for
n-dimensional cubes with a single instance

I approx. 10 seconds for a cube of degree 30 (64 runs)
I approx. 3 hours for a cube of degree 40 (64 runs)

Cube dimension 30 35 37 40 44 46 50

Nb. of queries 222 227 229 232 236 238 242

Time 0.17 sec 5.4 sec 21 sec 3 min 45 min 3 h 2 days

Found a distinguisher on 237 rounds in 254 clocks
I #samples×#cipher

clocks×#evaluations= 64× 256× 240 = 254

61 / 69

Performance and results

I evaluation of (n + 8)-dimensional cubes as fast as for
n-dimensional cubes with a single instance

I approx. 10 seconds for a cube of degree 30 (64 runs)
I approx. 3 hours for a cube of degree 40 (64 runs)

Cube dimension 30 35 37 40 44 46 50

Nb. of queries 222 227 229 232 236 238 242

Time 0.17 sec 5.4 sec 21 sec 3 min 45 min 3 h 2 days

Found a distinguisher on 237 rounds in 254 clocks
I #samples×#cipher

clocks×#evaluations= 64× 256× 240 = 254

61 / 69

Extrapolation

Logarithmic extrapolation with standard linear model
In

iti
al

iz
at

io
n

ro
un

ds

Cube size
0 20 40 60 80 100

160

180

200

220

240

260

280

In
iti

al
iz

at
io

n
ro

un
ds

Cube size
70 72 74 76 78 80

250

251

252

253

254

255

256

257

258

259

260

cubes of degree 77 conjectured sufficient for the full
Grain-128
⇒ attack in 283 initializations vs. 2128 ideally

62 / 69

Observations on Grain-v1

Differences:
I The size of the LFSR and the NFSR is 80-bit
I 80-bit keys, 64-bit IVs, and 160 initialization rounds
I Feedback polynomial of NFSR has degree six and is less

sparse
I Filter function h is denser
I Algebraic degree and density converge faster towards

ideal ones

Rounds 64 70 73 79 81
Cube dimension 6 10 14 20 24

Grain-v1 seems to resist cube testers and basic cube attack
techniques

63 / 69

Conclusions

64 / 69

Cube attacks

I Generic algebraic cryptanalysis methods
I Differ from established algebraic attacks
I Cryptanalysis of simplified and full variants of well

known stream ciphers, e.g., Trivium, Grain-128
I Seem applicable only for symmetric crypto systems

with inherently low degree components

65 / 69

Cube testers

+
I more general than classical cube attacks
I no precomputation
I “polymorphic”
I first dedicated hardware for cube testers on Grain-128
I Grain-v1: much more resistent (higher degree of

boolean function g)

–
I only gives distinguishers
I only finds feasible attacks
I relevant for a minority of functions (like cube attacks)

66 / 69

References

S. O’Neil: Algebraic structure defectoscopy. Cryptology
ePrint Archive, Report 2007/378, 2007.

H. Englund, Th. Johansson, M. Sönmez Turan: A
framework for chosen IV statistical analysis of stream
ciphers, INDOCRYPT 2007, pp. 268-281.

S. Fischer, S. Khazaei, W. Meier: Chosen IV statistical
analysis for key recovery attacks on stream ciphers. In
AFRICACRYPT 2008, pp. 236-245.

M. Vielhaber. Breaking ONE.FIVIUM by AIDA an
algebraic IV differential attack: Cryptology ePrint Archive,
Report 2007/413, 2007.

67 / 69

S. Khazaei, W. Meier: New directions in cryptanalysis of
self-synchronizing stream ciphers, INDOCRYPT 2008, pp.
15-26.

I. Dinur, A. Shamir: Cube Attacks on Tweakable Black
Box Polynomials, EUROCRYPT 2009. Also on Cryptology
ePrint Archive, Report 2008/385.

J.-P. Aumasson, I. Dinur, W. Meier, A. Shamir: Cube
Testers and key Recovery Attacks On Reduced-Round
MD6 and Trivium, FSE 2009, pp. 1-22.

J.-P. Aumasson, I. Dinur, L. Henzen, W. Meier, A. Shamir:
Efficient FPGA Implementations of High-Dimensional
Cube Testers on the Stream Cipher Grain-128, SHARCS
2009. Also on Cryptology ePrint Archive, Report
2009/218.

68 / 69

Open Problems

How to predict the asymptotic growth of degree of
maxterm?

How to find the best cubes?

69 / 69

